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Approximate Orthogonal Sparse Embedding
for Dimensionality Reduction

Zhihui Lai, Wai Keung Wong, Yong Xu, Member, IEEE, Jian Yang, and David Zhang, Fellow, IEEE

Abstract— Locally linear embedding (LLE) is one of the most
well-known manifold learning methods. As the representative
linear extension of LLE, orthogonal neighborhood preserving
projection (ONPP) has attracted widespread attention in the
field of dimensionality reduction. In this paper, a unified sparse
learning framework is proposed by introducing the sparsity
or L1-norm learning, which further extends the LLE-based
methods to sparse cases. Theoretical connections between the
ONPP and the proposed sparse linear embedding are discovered.
The optimal sparse embeddings derived from the proposed
framework can be computed by iterating the modified elastic
net and singular value decomposition. We also show that the
proposed model can be viewed as a general model for sparse
linear and nonlinear (kernel) subspace learning. Based on this
general model, sparse kernel embedding is also proposed for
nonlinear sparse feature extraction. Extensive experiments on
five databases demonstrate that the proposed sparse learning
framework performs better than the existing subspace learning
algorithm, particularly in the cases of small sample sizes.

Index Terms— Dimensionality reduction, elastic net, image
recognition, manifold learning, sparse projections.

I. INTRODUCTION

D IMENSIONALITY reduction or feature extraction is
widely used in data mining, computer vision, and pattern
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recognition. The classical dimensionality reduction methods,
such as principle component analysis (PCA) [1]–[3] and
linear discriminant analysis (LDA) [4]–[6], and their modified
methods [7]–[9] are simple, effective, and widely used
in different fields, including face recognition, palmprint
recognition, and so on. However, these classical methods
(i.e., PCA and LDA) only focus on the global structure of
a data set for dimensionality reduction.

Roweis and Saul [10] and Tenenbaum et al. [11] indicate
that images of different objects lie on a low-dimensional
manifold embedded in a high-dimensional space. To discover
the intrinsic geometry structure of a data set, manifold learning
methods have been widely used in the past decade, and the
well-known ones, such as locally linear embedding (LLE) [10],
ISOMAP [11], and Laplacian eigenmap [12], were proposed.
Inspired by these nonlinear methods, a lot of linear dimen-
sionality reduction methods based on manifold learning were
proposed for feature extraction. Among these methods,
neighborhood preserving embedding (NPE) [13], orthogonal
neighborhood preserving projection (ONPP) [14], and locality
preserving projections [15], [16] are the representative ones,
which preserve the local geometric structure of the man-
ifold using simple linear approximation to the nonlinear
mappings. Due to their simplicity and effectiveness, the
LLE-based methods were extended to different forms and
widely used in facial expression recognition [17], image
prediction and retrieval [18], [19], feature fusion [20], face
recognition [13], [14], [21], gait recognition [22], and human
motion recognition [23].

Recent research shows that the L1-norm sparse learning can
enhance the robustness for classification or feature extraction.
For example, the sparse representation classifier was proposed
for robust face recognition [24]–[26]. The sparse graph or
L1 graph was also used in spectral clustering [27] and label
propagation [28]. In addition, an important application of the
sparse graph or L1 graph is to characterize the robust spare
reconstruction relationship among the data points for feature
extraction. The representative methods are sparsity preserving
projections (SPP) [29] and its supervised extension [30], which
aim to learn the linear subspace for dimensionality reduction.

However, the classical (i.e., PCA and LDA), manifold
learning-based (i.e., ONPP and NPE) and L1 graph-based
(i.e., SPP and its supervised extension [30]), and sparse
color component-based [31] linear dimensionality reduction
methods can only learn compact projections (i.e., elements in
the projections are usually nonzero). Thus, such projections
lack reasonable interpretation. On the other hand, the
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previous studies show that the introduction of the L1 norm
for sparse regression not only enhances the prediction
accuracy but also strengthens the generalization ability and
the robustness for prediction [32]–[34]. Therefore, the sparse
subspace learning methods have attracted much attention. The
common properties of the so-called sparse subspace/projection
learning methods are that the projection vectors contain a
lot of zero elements and can provide the psychological and
physiological interpretation. To this end, the representative
sparse subspace learning method sparse PCA (SPCA) [35]
and double shrinking algorithm (DSA) [36] were proposed,
in which the L1-norm penalty was imposed on the
regularized optimization problem. Using the label information,
Clemmensen et al. [37] proposed the sparse discriminant
analysis (SDA), which extends the LDA to sparse cases.
Cai et al. [38] proposed the unified sparse subspace
learning (USSL) framework via sparse regression on the
spectral of a special neighborhood graph. Using the elastic
net [34] for regression, the most important/contributive
variables are selected to form the projective vectors in SPCA,
SDA, and USSL.

The sparse extensions of the classical methods
(i.e., SPCA and SDA) only focus on the global geometric
structure in dimensionality reduction. Although USSL
takes the local geometric structure into account, it has the
following two disadvantages. First, the projections of USSL
are independently computed and cannot guarantee complete
or approximate orthogonality and thus the effectiveness for
feature extraction may be degraded [14], [17], [21]. Second,
since the two-step approximation method used in USSL can
cause bigger approximation error, the locality preserving
ability of USSL may also be affected. Since the data
(e.g., images) lie on a low-dimensional manifold embedded
in a high-dimensional space, it is very important to explore
the local geometric structure in dimensionality reduction.
Therefore, it is necessary to develop a new framework
preserving the manifold structure and the orthogonality so as
to explore the important factors in a sparse manner in feature
extraction. It is desirable to further improve the recognition
performance of the sparse subspace learning algorithm and
strengthen the generalization ability and the robustness.

In this paper, the ONPP is taken as an example to design
a novel sparse subspace learning framework, including linear
and nonlinear forms, to meet the practical needs in sparse
feature extraction. The main contributions of this paper are as
follows.

1) We propose a general sparse subspace learning frame-
work called sparse linear embedding (SLE) that can
directly integrate the local geometric structure to obtain
the sparse projections. We show that the optimal sparse
subspace can be computed by iterating elastic net regres-
sion and singular value decomposition (SVD).

2) The theoretical relationships between the proposed SLE
and ONPP are revealed. In addition, the intrinsic connec-
tions between SLE and some sparse subspace learning
methods are also discussed.

3) Using the same framework as the platform,
Kernel ONPP (KONPP)[14] can also be extended

to sparse cases, which shows that the framework is not
only suitable for sparse linear subspace learning but
also suitable for sparse nonlinear subspace learning.

4) Extensive experimental results show that SLE and sparse
kernel embedding (SKE) perform better than the clas-
sical sparse subspace learning methods, the sparse, and
nonsparse manifold learning-based algorithms in feature
extraction and classification.

The rest of this paper is organized as follows. In Section II,
LLE and its linear and kernel extensions are reviewed.
In Section III, regression analysis is presented as the prepa-
rations for SLE. In addition, SLE is proposed in Section IV.
Section V simply presents the SKE algorithm. Experiments
are carried out to evaluate the SLE and SKE algorithm in
Section VI. Finally, the conclusions are given in Section VII.

II. RELATED WORKS

In this section, LLE, NPE, and ONPP are reviewed. Some
theoretical analyses are also given for the sake of presenting
the proposed sparse embedding framework.

Let the matrix X = [x1, x2, . . . , xN ] be the data matrix,
including all the training samples {xi}N

i=1 ∈ Rm in its columns.
In practice, the feature dimension m is often very high. The
goal of (sparse) linear dimensionality reduction is to transform
the data from the originally high-dimensional space to a
low-dimensional one

y = AT x ∈ Rd (1)

for any x ∈ Rm with d � m, where A = (a1, a2, . . . , ad)
and ai (i = 1, . . . , d) is an m-dimensional column vector.
For the sparse projection learning methods, ai (i = 1, . . . , d)
shall be sparse (i.e., only a few elements in ai are nonzero
elements/loadings).

A. Locally Linear Embedding

LLE aims to preserve the local linear reconstruction
relationship among the data points. In the first step of LLE,
each sample xi is approximated by a weighted linear com-
bination of its k nearest neighbors on the assumption that
the neighboring samples lie on a locally linear patch of the
nonlinear manifold. The following cost function should be
minimized:

ε(W ) =
∑

i

∥∥∥∥xi −
∑

j∈Nk (xi )

Wij x j

∥∥∥∥
2

s.t.
∑

j∈Nk(xi )

Wij = 1

(2)

where Nk(xi ) denotes the index set of k nearest neighbors
of xi and Wij is the optimal local least square reconstruction
coefficients.

Once the optimal reconstructive matrix W is obtained,
in the second step, it is kept fixed and the final embedding
coordinates can be computed by minimizing the following
optimization problem:

ε(Y ) =
∑

i

∥∥∥∥yi −
∑

j

Wi j y j

∥∥∥∥
2

= tr(Y (I − W )T (I − W )Y )

s.t. Y Y T = I (3)
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where Y = [y1, y2, . . . , yd ]. The eigenvectors corresponding
to the smaller eigenvalues of the eigenfunction are the final
embedding of the data set

(I − W )T (I − W )y = λy. (4)

where y is the eigenvector corresponding to eigenvalue λ.
Since there exists the out-of-samples problem for LLE, the
linearization method (i.e., ONPP) is proposed to solve this
problem.

B. Orthogonal Neighborhood Preserving Projections

ONPP aims at preserving the local neighborhood geometry
structure of the data. The affinity weight matrix of ONPP is
from the coefficients of the local least squares approximation
as in LLE. To obtain the orthogonal linear projection that
can preserve the local linear reconstructive relationship,
ONPP uses the strategy of linear approximation to the
nonlinear mapping of LLE to learn the projection. The
criterion for choosing the optimal projection P is to minimize
the cost function

min
a

∑

i

∥∥∥∥aT xi −
∑

j

Wi j aT x j

∥∥∥∥
2

s.t. aT a = 1. (5)

The optimal projections of (5) are the orthogonal eigenvectors
corresponding to the minimum eigenvalue of the following
standard eigenvalue problem:

X (I − W )T (I − W )X T a = λa (6)

or in the matrix form as

X (I − W )T (I − W )X T A = A� (7)

where � is the eigenvalue matrix whose diagonal elements
are the eigenvalues of X (I − W )T (I − W )X T.

It should be noted that the orthogonal eigenvectors of
ONPP can also be obtained using SVD. Let the SVD of
X (I −W )T = U DV T , where D contains the nonzero singular
value in ascending order. Since

X (I − W )T (I − W )X T = U DV T V DU T = U D2U T . (8)

It can be seen that the column vectors in U corresponding
to the first d smaller nonzero singular values are also the
solutions/projections of ONPP.

III. REGRESSION FOR LINEAR EMBEDDING

In this section, we focus on the SLE method (i.e., the sparse
extension of ONPP). The idea is to represent the objective
function of ONPP in the regression form and provide the
theoretical guarantee that the regression solutions/subspace are
exactly the solution space of ONPP, which are the eigenvectors
of the eigenequation of (6). Thus, the L1-norm penalty term
can be added to the regression minimization problem for
computing the sparse vectors.

A. Representation of ONPP

Suppose the weight matrix W in ONPP is given and thus
we can define a special matrix associated with the weight
matrix as

M = (I − W ). (9)

To preserve the locally linear reconstruction relationship of the
data set reflected by W (or M), the weight matrix W (or M)
must be integrated into the new optimization problem, and
the solutions’ equivalence between the ONPP and the new
optimization problem should be guaranteed in theory. In other
words, the objective function of ONPP should be rewritten in
other forms but with the same optimal solution space as the
original ONPP.

Let us take the following optimization problem into
consideration:

min
b

∑

i

∥∥bbT X MT
i,: − X MT

i,:
∥∥2

F (10)

s.t. bT b = 1 (11)

where Mi,: denotes the i th row vector in matrix M and
b ∈ Rm is the projection. The original idea in (10) is that
any locally linear reconstruction of the data X MT

i,: should be
close to the transformed data bbT X MT

i,: . Thus, minimizing
the sum of the errors will lead to preserve the locally linear
reconstructive relationship as the one in ONPP or LLE.
For the optimization problem (10) and (11), we have the
following theorem.

Theorem 1: The optimization problem in (10) and (11) can
derive the same solutions to the eigenequation (6).

Proof: From (10) and (11), we have
∑

i

∥∥bbT X MT
i,: − X MT

i,:
∥∥2

F

=
∑

i

tr
[
bbT X MT

i,:
(
bbT X MT

i,:
)T − 2bbT X MT

i,:
(
X MT

i,:
)T

+ X MT
i,:

(
X MT

i,:
)T ]

= tr(X MT M X T − bbT X MT M X T ).

The second = satisfies since bT b = 1 is used. Therefore, since
tr(X MT M X T ) is a constant, the above minimization problem
becomes the following maximization problem:

max
b

tr(bbT X MT M X T ) = max
b

tr(bT X MT M X T b)

s.t. bT b = 1. (12)

Using the Lagrange multiplier method, the eigenequation
of (6) can be derived from (12). Therefore, any eigenvector
corresponding to eigenvalue λ in (6) is also the optimal
solution to (12) when the Lagrange multiplier is
set as λ.

Theorem 1 indicates that the eigenvectors of (6) or (7) can
be derived from other form as (10) and (11). In Section III-B,
it could be seen that in essence this provides a tractable way
to learn the same subspace/solution space as in (6) or (7).
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B. Projection Relaxation for ONPP

Theorem 1 provides the equivalent representation of the
eigenequation of (6). However, this representation cannot gen-
erate the sparse solutions. Our idea is to relax the projection by
taking bT in the term bbT X Mi,: of (10) as a new variable pT

so that (10) is rewritten in a regression form and thus the
sparse regression algorithms can be used to compute the sparse
solutions. To this end, we first discuss a new optimization
problem

min
b,p

∑

i

∥∥bpT X MT
i,: − X MT

i,:
∥∥2

F

s.t. bT b = 1. (13)

Theorem 2: Suppose X (I −W )T (I −W )X T is the full-rank
matrix. Let p∗ be the optimal solution to (13), then
p∗ = δU(:, end), where δ = 1 or − 1 and U(:, end) denote
the last left singular vector as in (8).

Proof: The proof is a special case of Theorem 3. Thus,
it is omitted for avoiding repetition.

Theorem 2 shows that the optimal solution (i.e., the
subspace spanned by p∗) is the same as the one spanned by
U(:, end). The only difference is the direction (i.e., positive or
negative), which does not affect the theoretical analysis, since
we can simply select to set δ = 1 resulting in p∗ = U(:, end).

Theorem 2 guarantees in theory that the optimization
problem (13) can derive the same solutions to (6) when
X (I − W )T (I − W )X T is the full-rank matrix. However,
X (I − W )T (I − W )X T may be not the full-rank matrix, since
small sample size problems frequently exist in practice. Thus,
it is necessary to develop new models and theories to deal
with this case, which will be shown in the next section.

C. Modified Ridge Regression Representation of ONPP

There are two reasons for discussing the ridge regression
representation of ONPP. The first is to deal with the singular
problem [i.e., X (I − W )T (I − W )X T is not the full-rank
matrix]. The second is that we plan to use the elastic net algo-
rithm to obtain the sparse solutions, which needs to impose the
L1 and L2 norms on the regression-type optimization problem
simultaneously. Therefore, let us first consider the modified
ridge regression problem as follows:

min
b,p

∑

i

∥∥bpT X MT
i,: − X MT

i,:
∥∥2

F + β‖p‖2

s.t. bT b = 1. (14)

For the above optimization problem, we have the following
theorem.

Theorem 3: Let p∗ be the optimal solution of (14), then
p∗ = δ(D2

1/D2
1 + β)U(:, end), where δ = 1 or − 1 and

D1 denote the largest singular value of X (I − W )T . If δ = 1
and let

�
p = p∗/ ‖p∗‖, then

�
p = U(:, end).

Proof: The proof is in the Appendix.
Thus, the theoretical analysis shows that (14) also derives

the same solution as the original ONPP in (6). However, the
above analysis only reveals the relationship between the first
projection of ONPP and the regression optimization problem.
Usually, a single projection is not enough for feature extraction

or dimensionality reduction. Thus, a set of projections is
needed. We should consider a more complex case to compute
a set of projections which are expected to be the same as
the projections of ONPP so as to optimally preserve the local
geometry relationship.

The next theorem extends Theorem 3 to derive the whole
sequence of projections and reveals the relationship between
the set of projections of ONPP and the new optimization
problem. Let us take the optimization problem in the matrix
form as follows:

min
B,P

∑

i

∥∥B PT X MT
i,: − X MT

i,:
∥∥2

F + β‖P‖2
F

s.t. BT B = Id (15)

where both B = (b1, b2, . . . , bd) and P = (p1, p2, . . . , pd)
are of the size m ×d matrices. This optimization problem can
provide the sequential solutions of ONPP [i.e., the solutions
of (7) instead of a single solution/projection]. This can be
guaranteed by the following theorem.

Theorem 4: Let P∗ be the optimal solution to (15), then
P∗ = [p∗

1, p∗
2, . . . , p∗

d ] = U(D2/D2 + β I )�, where diagonal
matrix � only contains 1 or −1 in its diagonal elements. If the
diagonal elements in � are all set to 1, and let

�
pi = p∗

i /‖p∗
i ‖,

then
�

P = [�
p1, . . . ,

�
p1] = U(:, 1 : d).

Proof: The proof is similar to the one in Theorem 3 with
b and p replaced by matrix B and P , respectively. Thus, it is
omitted.

Theorem 4 shows whether the matrix X (I −W )T (I −W )X T

is singular or not, the modified ridge regression representation
in optimization (15) can always derive the sequential solutions
of ONPP in (7) or (8).

Theorem 4 also shows that if the normalized steps are
operated on P∗, the model can derive exact solutions of ONPP.
However, the optimal solutions to (15) are usually nonsparse,
and therefore the L1-norms penalty is also imposed on the
model, which is presented in the next section.

IV. SPARSE LINEAR EMBEDDING

In this section, the model of the proposed SLE will be
introduced and the optimization method is also presented.

A. Model and Its Solutions of Sparse Linear Embedding

Since the modified regression optimization problem (14)
or (15) cannot give the sparse projections, a tractable method is
to add the L1 norm to the optimization problem in (14) or (15).
Thus, we have the following SLE model combining
L1 and L2 norms for regression:

min
b,p

∑

i

∥∥bpT X MT
i,: − X MT

i,:
∥∥2

F + β‖p‖2 + γ |p|

s.t. bT b = 1 (16)

or in the matrix form

min
B,P

∑

i

∥∥B PT X MT
i,: − X MT

i,:
∥∥2

F + β‖P‖2
F +

d∑

l=1

γl |pl |

s.t. BT B = Id (17)

where β > 0, γl > 0, and | · | denote the L1 norm.
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TABLE I

SPARSE LINEAR EMBEDDING ALGORITHM

It can be seen from (16) and (17) that it is difficult to directly
solve the optimization problem with L1- and L2-norm penalty.
Therefore, we propose to use the alternative iteration method
to solve this problem. Since a single solution is insufficient
for feature extraction, the optimization problem in the matrix
form (17) is considered in Section IV-B.

B. Solutions of SLE

Similar to the proof in Theorem 3, on the one hand,
(17) can be rewritten as

∑

i

∥∥B PT X MT
i,: − X MT

i,:
∥∥2

F + β‖P‖2
F +

d∑

l=1

γl |pl |

= tr(X MT M X T ) +
d∑

l=1

pT
l (X MT M X T + β I )pl

− 2 pT
l X MT M X T bl + γl |pl |. (18)

For given B (i.e., bl is fixed), since tr(X MT M X T ) is a
constant and thus it can be ignored. Then, minimizing (18) is
equivalent to solve the d-independent elastic net problems so
as to get the optimal pl (l = 1, 2, . . . , d), which constitutes
matrix P .

On the other hand, (18) can also be represented as

∑

i

∥∥B PT X MT
i,: − X MT

i,:
∥∥2

F + β‖P‖2
F +

d∑

l=1

γl |pl |

= tr[X MT M X T + PT (X MT M X T + β I )P] +
d∑

l=1

γl |pl |

− tr(2PT X MT M X T B). (19)

For given matrix P , the term tr[X MT M X T +
PT (X MT M X T + β I )P] + ∑d

l=1 γl |pl | becomes a constant,
and thus can be ignored. Then, minimizing (19) for the given
matrix P becomes the following maximization problem:

max
B

tr(BT X MT M X T P)

s.t. BT B = Id . (20)

The following theorem gives the optimal solutions to the
optimization problem (20).

Theorem 5: Let the SVD of X MT M X T P = Ũ D̃Ṽ T , and
then B̃ = Ũ Ṽ T is the optimal solution to (20).

Proof: The proof is similar to the one in [35, Th. 4].

If γl → 0+, the optimal
�

B → U(: 1 : d), which indicates
that the optimal B in the iteration procedures always lies
on the same subspace as ONPP. Furthermore, according to

Theorem 4, this property makes the (sparse) matrix
�

P also
close to this orthogonal subspace (when γl → 0+), which

indicates that the sparse projection matrix
�

P is approximately

orthogonal. Thus, the effectiveness of using
�

P for feature
extraction and discrimination is guaranteed (when ONPP is
extended to sparse cases). These properties also indicate that
the local geometry structure of the data set can be optimally
preserved in a sparse manner.

C. Convergence of the Proposed Algorithm

In this section, we discuss the convergence of the iterative
algorithm.

Theorem 6: The iterative procedures of SLE presented in
Table I will converge to a local optimum.

Proof: The original objective function of SLE in each
iteration step can be rewritten as follows:

J (B(t−1), P(t−1)) =
∑

i

∥∥B(t−1)P(t−1)T X MT
i,: − X MT

i,:
∥∥2

F

+ β‖P(t−1)‖2
F +

d∑

l=1

γl
∣∣p(t−1)

l

∣∣

where B(t−1) and P(t−1) are the optimal solutions of the
objective function in the t − 1th iteration, and p(t−1)

l is the
column vector in P(t−1).

For the given B(t−1), the elastic net algorithm can give the
optimal solution P(t), which decreases the objective function.
Thus, we have J (B(t−1), P(t)) ≤ J (B(t−1), P(t−1)).

On the other hand, for the given P(t), the SVD of
X MT M X T P(t) provides the optimal solution of B(t), which
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further decreases the objective function. Thus, we have
J (B(t), P(t)) ≤ J (B(t−1), P(t)).

From the above analysis, we have J (B(t), P(t)) ≤
J (B(t−1), P(t−1)). Therefore, the objective function will
converge to a local optimum in the iteration.

Since the object function is strict convex with respect to
the variable P (mainly because of the quadratic term of P),
according to [39, Proposition 2.1.2], the optimal solution is
unique. Hence, the convergence of the function values implies
the convergence of the variable P [40, Corollary 27.2.2].
On the other hand, the object function is convex with respect
to the variable B (the object function is a linear function of B).
According to [40, Corollary 27.2.1], the sequence of B(t) is
bounded and its every cluster point is a minimum point of the
object function. Therefore, the convergence of the variable P is
guaranteed and the weak convergence of the variable B can
also be obtained.

D. Discussion and Comparison

SPCA is obtained by extending the PCA to sparse cases. The
following proposition shows the close relationship between
SPCA and SLE.

Proposition 1: SPCA is a special case of the SLE model.
Proof: We only need to show that the optimization prob-

lem of SPCA is exactly the modified one of SLE when the
local neighborhood matrix is defined in a special way as
follows:

M̃ =
√

1

N

(
I − 1

N
eeT

)

where e is an N-dimensional vector whose elements are all 1s.
Then, the optimization problem of SLE in (18) with the
specially defined neighborhood matrix M̃ converses to be

min
B,P

∑

i

∥∥B PT X M̃i,: − X M̃i,:
∥∥2

F + β‖P‖2
F +

d∑

l=1

γl |pl |

= min
bl ,pl

tr(X M̃T M̃ X T ) +
d∑

l=1

pT
l (X M̃T M̃ X T + β I )pl

− 2 pT
l X M̃T M̃ X T bl + γl |pl |

= min
bl ,pl

tr(ST ) +
d∑

l=1

pT
l (ST + β I )pl − 2 pT

l ST bl + γl |pl |

s.t. BT B = Id

where ST = X (1/N)(I − (1/N)eeT )X T is exactly the total
scatter matrix in PCA. It can be seen from [35] that the above
optimization problem is exactly the SPCA criterion. Therefore,
SPCA is a special case of the SLE model.

DSA aims to minimize the following problem:
min pT

l Spl + γl |pl | s.t. pT
l pl = 1.

It is easy to obtain the relationship of SLE and DSA.
Proposition 2: For the given matrix S, SLE degrades to be

DSA when B = P and β = 0.

Proof: Let S = X MT M X T. From (19), we have

min
B,P

tr[PT (S + β I )P − tr(2PT SB)] +
d∑

l=1

γl |pl |

(s.t. BT B = Id ).

If B = P and β = 0, the above optimization problem derives

min
P

tr[PT (S + 0I )P − tr(2PT S P)] +
d∑

l=1

γl |pl|

(s.t. PT P = Id )

⇒ min
d∑

l=1

pT
l (−S)pl + γl |pl |

(
s.t. pT

l pl = 1
)
.

It is easy to find that SLE degrades to be d-independent DSA
with the given scatter matrix S for each projection pl . The
only difference is the sign of the matrix, which has no essential
effect to the optimization problem.

Therefore, SLE not only intrinsically includes the previous
SPCA algorithm and the DSA algorithm for the given scatter
matrix but also integrates the local geometric structure to
extend the existing subspace learning method to sparse cases.
By defining different matrices M , the SLE model can derive
different sparse subspace learning algorithms.

V. SPARSE KERNEL EMBEDDING

In this section, sparse kernel extension using the SLE model
is presented and some theoretical analyses are also provided.
Since the idea of SKE is similar to SLE except for operating
on the kernel space, the modified kernel ridge regression is
directly given and then the SKE algorithm is presented briefly.

A. Kernel Technique

Recently, the sparse learning method was widely used in
kernel learning [6], [41], [42]. However, unlike these methods,
the novel sparse kernel model presented in this paper can be
directly derived by the SLE model. Since this paper mainly
focuses on the sparse linear model, the kernelized SLE, which
is called as SKE, will be simply presented as an example to
show that the proposed model can also be used for sparse
nonlinear subspace learning as a general framework. It is
known that KONPP [14] uses the kernel technique which
maps the samples in the original input space into a potentially
much higher dimensional space by a nonlinear mapping
ϕ : x → ϕ(x). SKE also aims to preserve the local geometric
structure in the kernel subspace for dimensionality reduction.
In the kernel space, the kernel matrix can be defined as

Ki, j � k(xi , x j ) = 〈ϕ(xi ), ϕ(x j )〉. (21)

That is, K � ϕ(X)T ϕ(X). Then, the reconstruction matrix
W of the SKE can be obtained by the following optimization
problem:

min
W

∑

i

∥∥∥∥ϕ(xi ) −
∑

j∈Nk(xi )

Wij ϕ(x j )

∥∥∥∥
2

s.t.
∑

j∈Nk(xi )

Wij = 1.

The optimal reconstructive coefficient matrix in the kernel
feature space can be used in the SKE algorithm.
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B. Kernel Formulation

Suppose the neighborhood matrix M = (I − W ) is
given. Without misleading and losing generality, still let
B = (b1, b2, . . . , bd) and P = (p1, p2, . . . , pd) be the
matrices with the size of N × d that should be optimized
in the kernel space

min
B,P

∑

i

∥∥B PT ϕ(X)Mi,: − ϕ(X)T ϕ(X)Mi,:
∥∥2

F

s.t. BT B = Id . (22)

Similar to other kernel algorithms, suppose P are in the
range of ϕ(X), i.e., P = ϕ(X)P̃ . Substituting P = ϕ(X)P̃
to (22) and adding the regularization term β‖P̃‖2

F , we have
the following optimization problem:

min
B̃, P̃

∑

i

∥∥B(ϕ(X)P̃)T ϕ(X)Mi,: − K Mi,:
∥∥2

F + β‖P̃‖2
F

= min
B̃, P̃

tr[B P̃T K MT M K − 2P̃T K MT M K B̃

+ K MT M K ] + β‖P̃‖2
F

= min
B̃, P̃

tr[P̃T (K MT M K + β I )P̃

− 2P̃T K MT M K B̃ + K MT M K ].
Thus, by discarding the constant term K MT M K , the
constraint regression problem becomes

min
B̃, P̃

tr[P̃T (K MT M K + β I )P̃ − 2P̃T K MT M K B]

s.t. BT B = Id . (23)

For the above optimization problem, the following theorem is
obtained.

Theorem 7: Supposed Q = [q1, q2, . . . , qd ] is the projection
matrix of KONPP. Denote the SVD of K MT = Ũ D̃Ṽ T , where
D contains the singular value in descending order. Let P̃∗ be
the optimal solution to (23), then P̃∗ = [ p̃∗

1, p̃∗
2, . . . , p̃∗

d ] =
Ũ(D̃2/D̃2 + β I )�, where diagonal matrix � only contains
1 or −1 in its diagonal elements. If the diagonal elements
in � are all set to 1 and let p∗

i
∼

= p̃∗
i /‖ p̃∗

i ‖ for any i , then

P
∼

∗ = [p∗
1

∼

, . . . , p∗
d

∼

] = Q.

Proof: The proof is similar to Theorem 3.
Theorem 7 reveals the relationship between KONPP and

the regression problem (23), which also provides a tractable
method for solving the sparse nonlinear learning problem
by adding the L1-norm penalty. The details are presented in
Section V-C.

C. SKE Algorithm

To obtain the sparse kernel subspace, we obtain the
L1 and L2-norm penalty problem of SKE as follows:

min
B, P̃

∑

i

‖B(ϕ(X)P̃)T ϕ(X)Mi,: − ϕ(X)ϕ(X)Mi,:‖2
F

+ β‖P̃‖2
F + β‖P̃‖2

F +
d∑

l=1

γl | p̃l |

s.t. BT B = Id (24)

where β > 0 and γl > 0 are used for penalizing the loadings of
different projection vectors. Similar to the formulation of the
SLE algorithm, we obtain the final model of SKE as follows:

min
B, P̃

tr[P̃T (K MT M K + β I )P̃ − 2P̃T K MT M K B]

+ β‖P̃‖2
F +

d∑

l=1

γl | p̃l |

s.t. BT B = Id . (25)

Following the same way as SLE, we can obtain the similar
algorithm procedures. Since the details are very similar to
SLE, it is omitted for avoiding repetition. Comparing (17)
with (24), we can obtain the general framework for linear and
nonlinear sparse embedding. The essential difference is to use
the data in original space or kernel space for sparse regression.

VI. EXPERIMENT

In this section, a set of experiments is presented to
evaluate the proposed SLE algorithm for recognition
tasks against the classical sparse learning methods
(i.e., SPCA and SDA), the most related manifold learning
methods, (i.e., NPE and ONPP), the manifold learning-based
sparse subspace learning method USSL, the L1-norm-based
SPP, and the L1 graph method proposed in [27]. The
Yale face database was used to explore the robustness of SLE
on the variations in expressions and illumination, and the
performance of the properties on different parameters. The
AR face database was employed to test the performance of
SLE when there was a variation in time, facial expressions,
and lighting conditions. The Carnegie Mellon University
Pose, Illumination, and Expression (CMU PIE) database was
used to evaluate the performance of these methods when face
poses and lighting conditions vary dramatically. The COIL-20
and Caltech 101 databases were used to test the performance
of the proposed algorithms in objective recognition. The
nearest neighborhood classifier with the Euclidean distance
was used in all experiments.

A. Databases

The Yale face database (http://www.cvc.yale.edu/projects/
yalefaces/yalefaces.html) contains 165 images from
15 individuals (each providing 11 different images) with
various facial expressions and lighting conditions. In our
experiments, each image was manually cropped and resized to
50 × 40 pixels. Fig. 1(a) shows sample images of one person
in the Yale database.

The AR face database [43] contains over 4000 color face
images from 126 people (70 men and 56 women), including
frontal views of faces with different facial expressions, lighting
conditions, and occlusions. The pictures of 120 individuals
(65 men and 55 women) were categorized into two sections
(separated by two weeks) and each section contained 13 color
images; 20 images from 120 individuals were selected and
used in our experiments. The face portion of each image was
manually cropped and then normalized to 50 × 40 pixels for
computational efficiency. The sample images of one person
are shown in Fig. 1(b).



730 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 4, APRIL 2016

Fig. 1. Image samples used in the experiments. (a) Yale face database. (b) AR face database. (c) CMU PIE face database. (d) COIL-20 object image database.
(e) Caltech 101 image database.

The CMU PIE face database [44] contains 68 individuals
with 41 368 face images as a whole. The face images are
captured in various poses, illuminations, and expressions.
In our experiments, we selected a subset (C29), which contains
1632 images from 68 individuals (each providing 24 images).
The C29 subset involves variations in illumination, facial
expression, and pose. All of these face images were aligned-
based one-eye coordinates and cropped to 32 × 32 pixels.
Fig. 1(c) shows the sample images from this database.

The COIL-20 database (http://www.cs.columbia.edu/CAVE/
software/softlib/coil-20.php) consists of 20 × 72 =
1440 images from 20 objects where the images of the
object are taken at pose intervals of 5° (i.e., 72 poses
per object). The original images were normalized to
128 ×128 pixels. All images were converted into a gray-scale
image of 32 × 32 pixels for computational efficiency in the
experiments. Some sample images of five objects are shown
in Fig. 1(d).

Caltech 101 data set contains 9144 images from 102 classes
(i.e., 101 object classes and a background class), including
animals, vehicles, flowers, and so on. The samples from
each category have significant shape variability. The number
of images in each category varies from 31 to 800. For
computational efficiency, a subset of 50 categories and each
category contains 31 images was used in the experiment.
Fig. 1(e) shows some images from the data set.

B. Experimental Settings

In the experiments, T (T = 4, 6) images of each individual
were randomly selected and used as the training set, and
one half of the remaining images as the validation set and the
remainders as the test set. The experiments were independently
conducted 10 times and the average recognition rates on
the test set were calculated and reported. For each run, the
validation set was used for parameter selection. When PCA
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Fig. 2. Some properties of SLE. (a) Variations of recognition rate versus the parameter k. (b) Variation of recognition rate versus parameter β.
(c) Recognition rates versus the dimension of each method on the Yale face database.

TABLE II

COMPARISON OF RECOGNITION RATE (PERCENTAGE), STANDARD DEVIATION, AND OPTIMAL DIMENSION ON YALE FACE DATABASE

TABLE III

COMPARISON OF RECOGNITION RATE (PERCENTAGE), STANDARD DEVIATION, AND OPTIMAL DIMENSION ON AR FACE DATABASE

is used for preprocessing, about 98% of image energy is
preserved as in the references. The optimal subspace dimen-
sions are ranged in [1, 40] on the Yale and COIL-20 databases
with step 1, and in [1, 150], [1, 200], and [1, 200] on the
CMU PIE, AR, and Caltech 101 databases, respectively, with
step 5, since within the higher dimension subspace, algorithms
cannot achieve a higher recognition rate. In SPCA, SDA,
USSL, SLE, and SKE, when the elastic net is used, β is
selected from 10−5, 10−4, . . . , 105, and the parameters γl can
be automatically determined, since the elastic net algorithm
can provide the optimal solution path of γl for given β [34].
The nearest neighbor parameter k in USSL, NPE, ONPP, SLE,
and SKE is selected from 1, 2, 4, . . . , N − 1. The Gaussian
kernel function is used for SKE to construct the nonlinear
data, in which the kernel width parameter δ is selected from
the 0.001, 0.01, and 0.1 times the mean distance of the training
data points. For each run, the optimal parameters determined
by the validation set are used in the algorithms to learn the
projections.

The variations of the parameters versus the recognition
rates in the Yale face database based on a single run are
shown in Fig. 2, which shows that when k = 4 or k ≥ 15

SLE achieves its best performance, the top recognition rates
have slight variations to the value of k. However, as shown
in Fig. 2(b), SLE is very robust to the value of β in a large
range. In other words, the top recognition rate can be achieved
when β varies from 10−6 to 105. Similar properties exist on
other databases.

C. Experimental Results and Its Analysis

The average recognition rates of each method in the
Yale, AR, CMU PIE face databases, the COIL-20, and the
Caltech 101 image database are shown in Tables II–VI,
respectively. The average recognition rates versus the dimen-
sion of each method on these databases are shown in
Figs. 2 and 3. In Fig. 3(a) and (b), five times of the numbers
marked on the horizontal axes are the real values of the optimal
dimensions shown in Tables III and IV (the dimension step is
set to be 5). Based on these experimental results, we have the
following observations and corresponding analyses.

1) SLE and SKE consider both the locality of the image
manifold structure, the approximate orthogonality and
the sparsity in subspace learning. Therefore, it performs
better than other methods, which only have one or
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TABLE IV

COMPARISON OF RECOGNITION RATE (PERCENTAGE), STANDARD DEVIATION, AND OPTIMAL DIMENSION ON CMU PIE FACE DATABASE

TABLE V

COMPARISON OF RECOGNITION RATE (PERCENTAGE), STANDARD DEVIATION, AND OPTIMAL DIMENSION ON COIL-20 FACE DATABASE

TABLE VI

COMPARISON OF RECOGNITION RATE (PERCENTAGE), STANDARD DEVIATION, AND OPTIMAL DIMENSION ON CALTECH 101 IMAGE DATABASE

Fig. 3. Recognition rates versus the dimension of each method on (a) AR, (b) CMU PIE, and (c) COIL-20 face database.

two properties. There is no complete vector for the
proposed SKE and SLE, which can be found in
Tables II, III, and VI.

2) Since USSL and SLE take the local geometric structure
into account, they usually perform better than SPCA
and SDA, which only take the global information in the
learning steps. SLE performs better than USSL, since
SLE has approximate orthogonal projections and the
projections of USSL are learnt independently and the
orthogonality cannot be preserved. For the challenging
data set, such as Caltech 101 database, SLE (and SDA)
significantly performs better than NPE and ONPP
through sparse feature selection.

3) The common property of NPE, ONPP, SPP, L1 graph,
and SLE is that they all aim to preserve the

reconstructive coefficient relationship. It is found
that SPP, L1 graph, and SLE introducing the sparsity
perform better than NPE and ONPP, which only use the
L2 norm as the measurement. However, it is also
found in Tables III and IV (T = 4) that when there
is only a very small number of training samples per
individual, the recognition rate of SPP is lower than
that of the other method and is significantly lower
than those of SLE and SKE. This indicates that in
the cases of very small sample size, introducing the
sparsity to projections can obtain better performance
than to enforce the sparsity on the reconstruction
coefficients. This also demonstrates that the methods
with the sparsity constraint on the projections can be
more robust/stable with the lack of training samples.
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4) SDA, which only focuses on the global information,
is a supervised sparse subspace learning method,
which extends LDA to sparse case. It can only obtain
C − 1-dimensional subspace. Moreover, it is difficult
for SDA to accurately estimate the optimal score in a
very high-dimensional space (i.e., in the original space
of the data set) for regression. Therefore, SDA cannot
perform better than SLE and SKE even though label
information is considered. Another potential reason
may be that the supervised method (i.e., SDA) is more
likely to overfit with a few training samples, whereas
the unsupervised methods are able to find a common
face manifold before classification and thus avoid
overfitting.

VII. CONCLUSION

In this paper, a general framework preserving the local
geometric structure and orthogonality among the projections
is proposed for sparse subspace learning. Theoretical analyses
show that the optimal sparse subspace of SLE approximates to
the subspace of ONPP, which guarantees the effectiveness in
dimensionality reduction. It is also shown that this framework
can be easily used in kernel form, which derives the SKE for
nonlinear dimensionality reduction. The optimization problem
can be solved using the iterative procedures, which combine
the elastic net algorithm and SVD together. Experiments
on four well-known image databases demonstrate that
SLE and SKE perform better than the previous sparse subspace
learning algorithms and the most related nonsparse subspace
algorithms in feature extraction. In the future, we will explore
a more general framework for sparse subspace learning when
there exist multiconstraints and preserve different geometry
structures. In addition, the supervised SLE and SKE are
also the important research issues, which are beyond the
scope of this paper and will be explored in another paper
in detail.

APPENDIX

PROOF OF THEOREM 3
∑

i

∥∥bpT X MT
i,: − X MT

i,:
∥∥2

F + β‖p‖2

=
∑

i

tr
[
bpT X MT

i,:
(
bpT X MT

i,:
)T − 2bpT X MT

i,:
(
X MT

i,:
)T

+ X MT
i,:

(
X MT

i,:
)T ] + βtr(ppT )

= tr(X MT M X T − 2bpT X MT M X T

+ ppT (X MT M X T + β I )). (A1)

For fixed b, taking the partial deviation of (A1) with respect
to p to be zero gives

−2X MT M X T b + 2(X MT M X T + β I )p = 0

thus

p = (X MT M X T + β I )−1 X MT M X T b. (A2)

Substituting (A2) in (A1) derives the following optimization
problem:

min tr(X MT M X T − bbT X MT M X T

× (X MT M X T + β I )−1 X MT M X T )

s.t. bT b = 1.

Since X MT M X T is a constant, the minimization problem
converts to the maximization problem

max tr(bT X MT M X T (X MT M X T + β I )−1 X MT M X T b)

s.t. bT b = 1. (A3)

Let the SVD of X (I − W )T = U DV T , where D contains the
singular value in ascending order. We have

X MT M X T (X MT M X T + β I )−1 X MT M X T

= U
D4

D2 + β I
U T . (A4)

Hence, b∗ = δU(:, end) is the optimal solution to (A3), where
δ = 1 or −1 and U(:, end) denote the last left singular vector
(corresponding to the largest singular value).

Let D1 be the singular value corresponding to U(:, end).
Substituting b∗ = δU(:, end) in (A2), we obtain the
optimal p∗

p∗ = (X MT M X T + β I )−1 X MT M X T δU(:, end)

= δ
D2

1

D2
1 + β

U(:, end) (A5)

this gives the results.
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